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Abstract 18 

The excess one pattern in count data has been documented in ecology but it has not been 19 

explicitly modeled or examined. In this study, we introduce a k-aggregated transformation of 20 

discrete distributions to better model count data with excess ones in a Bayesian generalized 21 

linear model framework and demonstrate its use with two groups of case studies (group 1: 22 

seabird bycatch in longline fisheries and Legionnaires disease incidence; group 2: survey 23 

abundance of Leadbeater’s possum and Frigatebird nesting sites). Group 1 examples have a 24 

clear excess one data pattern, and these examples are used to demonstrate the concept of the 25 

k-aggregation technique. On the other hand, group 2 examples lack a clear excess one 26 

pattern, and a modeler may not be motivated enough to use the k-aggregation technique in 27 

these cases. Nonetheless, k-aggregated transformation demonstrated better performance for 28 

both groups of examples. In all our case studies, the excess zero pattern co-occurred with an 29 

excess one pattern, and the excess zeros were modeled thorough either a zero-inflated or 30 

hurdle configuration. The better performance of k-aggregated distributions is due to their 31 

flexibility of adapting to the relatively high frequency of singletons in the data sets. This new 32 

technique has broad applicability and utility in improving modeling count data with potential 33 

excess ones. 34 

Keywords: count data; rare event; species distribution; Bayesian; generalized linear model.  35 



Introduction 36 

Count processes frequently occur in ecology, for example, species distribution modeling 37 

(Cunningham and Lindenmayer, 2005; Lyashevska et al., 2016; Welsh et al., 1996), catch rate 38 

analysis (Aidoo et al., 2015; Lo et al., 1992; Ward et al., 2004) and bycatch studies (Brodziak 39 

and Walsh, 2013; Martin et al., 2015; Megalofonou, 2005; Minami et al., 2007). Usually, count 40 

observations are either log transformed or analyzed using just a handful of count distributions. 41 

O’hara and Kotze (2010) showed the dangers of log-transforming count data to fit into 42 

continuous data models and advised against transforming count data in general. The reason that 43 

many people opt for data transformation could be the scarcity of count distributions. The Poisson 44 

distribution may be the most common count distribution, but it requires the equality of the data’s 45 

mean and variance, a feature which many field data fail to have. Many datasets have a larger 46 

variance than the mean, and the negative binomial and beta-binomial distributions, which build 47 

upon the binomial distribution, are often used to model such over-dispersed processes (White 48 

and Bennetts, 1996). More recently, the Conway-Maxwell-Poisson (CMP) distribution, which 49 

can model both over- and under-dispersion with respect to Poisson, has demonstrated superior 50 

performance over traditional distributions, and was recommended for analyzing ecological 51 

processes (Lynch et al., 2014). However, these distributions may fail to capture some relevant 52 

features present in the data. In the following, we present the excess one data pattern arising from 53 

studies of rare events that all the above-mentioned distributions failing to represent well, and 54 

then introduce a k-aggregated modeling technique for this type of count data and provide case 55 

studies. 56 

A data set has excess ones when it has more singletons than could be explained by the 57 

model at hand. It is a relative measure of the richness of the singletons in the data set in two 58 



senses. First, it is relative to the baseline model used to fit the data set, and one can only 59 

subjectively measure the number of excess ones after fitting a model; and secondly, it is relative 60 

to the other observations in the data set, as they also influence the expected number of singletons 61 

under a specific type of distribution. The following two examples, one from seabird bycatch in 62 

longline fisheries (Diaz et al., 2009; Zhou et al., 2019) and one from Legionnaires disease 63 

incidence (Xu et al., 2014), exhibit a clear excess one pattern that is evident even before model 64 

fitting (Figure 1). 65 

Seabird bycatch in longline fisheries exhibit a strong excess one pattern, i.e., a 66 

predominance of singleton seabird bycatches, and this feature has been previously reported in the 67 

Hawaii longline tuna fishery and western North Atlantic pelagic longline fishery (Gilman et al., 68 

2016; Li et al., 2012). However, this data pattern was never explicitly modeled or examined to 69 

see whether it was well represented in the model. In the western North Atlantic pelagic longline 70 

fishery (PLL), the number of seabirds caught in one fishing operation (i.e., set), among positive 71 

seabird bycatches, ranges from one to nine, with singletons comprising 35.9% of the total 72 

(Figure 1A). Seabirds are less frequently caught together. Counts of instances with 2 to 5 73 

seabirds caught approximately halve with increasing number of seabirds caught. A similar yet 74 

more pronounced pattern was found in the seabird bycatch data from the Hawaiian longline 75 

fishery, where 72% of the total were caught as singletons (Gilman et al., 2016). 76 

The International Commission for the Conservation of Atlantic Tunas recommended a 77 

delta log-normal model for modeling seabird bycatch (Hata, 2006; Li and Jiao, 2013; Lo et al., 78 

1992). The excess one pattern in the bycatch data after log-transformation does not conform to a 79 

normal distribution, and we suspect potential bias due to this model-data mismatch. The current 80 

version of the seabird bycatch model for the western North Atlantic already adopts this k-81 



aggregated modeling technique, and a recent study linking ecological traits of seabirds to bycatch 82 

risk potential also makes use of this modeling technique (Zhou et al., 2019). The new total 83 

bycatch estimates from 1992 to 2016 were on average 18.81% higher than the original estimates 84 

from a log-normal model (Zhou and Jiao, 2017).  85 

In the second case study, we explore the incidence of Legionnaires disease in Singapore, 86 

which show a strong excess one pattern (Tang et al., 2017; Xu et al., 2014). Legionnaires disease 87 

is a type of acute pneumonia caused by any type of Legionella bacteria, which is found in fresh 88 

water (Fraser et al., 1977). The infection rate is relatively low, and after exposure, only between 89 

0.1 and 5.0% of the general population develop the disease (Chartier et al., 2007). The weekly 90 

Legionnaire disease count data was reported by the Ministry of Health of Singapore in 2005, and 91 

it was previously studied by Tang et al. (2017) and Xu et al. (2014). Out of the records among 92 

positive Legionnaires cases, 85.2% of the counts are singletons, and records with multiple 93 

reports are less frequent (Figure 1B). Tang et al. (2017) found the Poisson distribution failed to 94 

capture this excess one feature and propose to model the excess ones in either a maximum 95 

likelihood approach based on expectation-maximization algorithm or a Bayesian approach based 96 

on MCMC methods. However, they only explored the Poisson distribution as the baseline model, 97 

and it is not clear how generally applicable the modeling strategy is, in other words, “how 98 

common is the excess one pattern?”, an issue also faced by the current study. 99 

Admittedly, the examples of seabird bycatch and Legionnaires disease are rather extreme 100 

in their degrees of excess one-ness, and such cases are indeed not common. To demonstrate the 101 

general utility of our k-aggregated technique on more subtle cases, we introduce a second group 102 

of examples. These examples include the count data of Leadbeater’s possum (Gymnobelideus 103 

leadbeateri) in southeastern Australia (Lindenmayer et al., 1991) and the number of Frigatebird 104 



(Fregata minor and F. ariel) nesting sites in the Coral Sea off north-eastern Australia 105 

(Cunningham and Lindenmayer, 2005). Both of these datasets have been previously used to 106 

demonstrate the utility of the zero-inflated model in ecology (Cunningham and Lindenmayer, 107 

2005). In the Leadbeater’s possum dataset, among survey sites with a positive count, singletons 108 

represent only 16.1%, and the count of three individuals is the most common case (21.4%, 109 

Figure 1C); in the Frigate nesting sites example, singletons represent 31.9% of the positive 110 

counts (Figure 1D). In both these cases, the percentage of singletons in the dataset looked so 111 

unexceptional that it certainly did not lead the original authors to investigate further.  112 

This study aims to motivate analysts and introduce a family of discrete distributions to 113 

better fit count data with excess ones and demonstrate the methodology using two groups of case 114 

studies. The first group of case studies serve to demonstrate the excess one data feature, the 115 

rationale of the k-aggregated technique, and why it works in improving model performance; the 116 

second group of case studies serve to demonstrate the broad applicability of the technique and 117 

show a more subtle side of the excess one feature in ecological data. 118 

Materials and methods 119 

Case studies 120 

 A brief description of the data and their sources of these case studies used can be found in 121 

Table 1. Group 1 exhibits a higher percentage of ones than group 2. For each group, we consider 122 

one study with and one without covariate(s). Except for the seabird bycatch study, all the data 123 

were extracted from published literature. In the following, we give a brief background of only 124 

the seabird bycatch study. Detailed accounts of other case studies can be found in the respective 125 

source references listed in Table 1. 126 



The U.S. Atlantic pelagic observer program (POP) is a multi-taxa survey program that 127 

records the catch of target species, bycatch of seabird and other incidental taxa, environmental 128 

information and gear characteristics of the U.S. western North Atlantic longline fleet (Diaz et al., 129 

2009; Li et al., 2016; Zhou et al., 2019). It targets a coverage of 8% of the fleet fishing effort 130 

(Diaz et al., 2009). A total of 16,889 longline operations (set/hauls) from the POP were used in 131 

this study. Among these, 78 records had a positive seabird bycatch that totaled 145 seabirds 132 

observed bycaught between 1992 and 2015. 133 

Probability distributions for the count process 134 

In this study, we consider 1) three base line distributions, including Poisson, negative 135 

binomial and Conway-Maxwell-Poisson (CMP) distributions, 2) the zero-truncated versions of 136 

those distributions, and 3) a new class of k-aggregated distributions for the count process. 137 

Poisson and negative binomial distributions are well known and not described here. As a 138 

modification of the Poisson distribution, the zero-truncated Poisson has a probability mass 139 

function 140 

 , 141 

with n being positive integers, and in a generalized linear model, a log link function is used 142 

, 143 

where cc is a constant, is the covariate matrix, and  is a vector of parameters to estimate. A 144 

log-linear relationship was assumed between covariates and the parameters of the distribution for 145 

the count process. Two case studies have a covariate in the count model: the number of hooks 146 
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per gear (numerical variable) was included in the seabird bycatch study; the log transformed 147 

number of trees with hollows on site was included in the Leadbeater’s possum study. 148 

The zero-truncated negative binomial has a probability mass function 149 

, 150 

where the shape parameter r is constrained to be positive, success probability p is modeled by 151 

assuming logit(p) has a linear relationship with the covariates, and  is a binomial 152 

coefficient, calculated as  , where  is the gamma function.  153 

The CMP distribution is a generalization of the Poisson distribution, and, with one 154 

additional shape parameter, it can model both over-dispersion and under-dispersion (Guikema 155 

and Goffelt, 2008; Kadane et al., 2006; Shmueli et al., 2005). In contrast, the negative binomial 156 

distribution only models over-dispersion with respect to Poisson. In this study, we used the 157 

Guikema and Goffelt (2008) formulation of the CMP 158 

 , 159 

, 160 

where ( , )S    is a normalizing constant, 0   is the shape parameter, 0   is the centering 161 

parameter of the CMP distribution and it is assumed that log( ) has a linear relationship with 162 

the covariates. This formulation of the CMP distribution has an infinite summation term ( , )S    163 
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which has no close form solution but can be approximated to any arbitrary precision with a large 164 

integer value for max i (Guikema and Goffelt, 2008 and references therein). In our computation, 165 

we explored using different integers for max i to balance the accuracy of the model and the 166 

computation time, and we found that using 50 as the maximum of i was enough for the current 167 

study.  168 

K-aggregated transformation 169 

To model excess ones, we aggregated the first k probabilities of an original distribution to 170 

represent the probability of a singleton outcome, and the probability mass function is 171 
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with : 0,1,2,k , where g  is an original distribution. With the transformed distribution, the 173 

probability of a singleton outcome is mapped to the sum of probabilities of positive outcomes of 174 

less than or equal to 1k   from the original distribution, and the probability of outcomes of 175 

larger than 1k   is mapped to the probability of an outcome of n k  from the original 176 

distribution. The transformed distribution is a valid distribution that integrates to one if the 177 

original distribution is a proper distribution. Hereafter, we call this new distribution a k-178 

aggregated distribution, of which the original distribution is a special case with 0k  . Parameter 179 

k acts as a shape parameter to help adapt the modeled distribution to the singleton outcomes in 180 

the data. All the models used in this study along with a brief description for each model are listed 181 

in Table 2. 182 



Excess Zeros 183 

All the case studies examined here also exhibit zero-inflation (Lambert, 1992). Either a 184 

zero-inflated or hurdle configuration was used to model excess zeros in the count data (Zuur et 185 

al., 2009).  186 

In a hurdle configuration, the probability of zero observations and the probability of 187 

positive observations are modeled separately. A Bernoulli distribution is used for the probability 188 

of a zero observation, and truncated-at-zero discrete distributions are used to model the count 189 

process.  190 

In a zero-inflated configuration, the probability of a zero observation and the probability 191 

of a positive observation are modeled together. A zero observation could come from either the 192 

zero mass or the count process, and a latent variable is used in the model to designate where each 193 

data point comes from. Case studies B) Legionnaires disease incidence and D) Frigatebird 194 

nesting do not include covariate information, and only the probability of a zero catch (p) was 195 

modeled. 196 

 For the case studies A) seabird bycatch and C) Leadbeater’s possum abundance, a logistic 197 

regression with a logit-link was used, in both hurdle and zero-inflated configurations, to relate 198 

covariates to the probability of a true zero (p) in the Bernoulli distribution 199 

 ( ) b b blogit p c  X , 200 

where bc  is a constant, bX  is the covariate matrix for the binary process, and b  is the vector of 201 

parameters to be estimated. For case study A), covariates used include geographical coordinates 202 

(numerical), season (categorical) and target species (categorical). This set of covariates was 203 

based on the significance of those variables in predicting seabird bycatch and the availability of 204 



such information in the data (Li and Jiao, 2013; Winter et al., 2011). For case study C), the 205 

covariate used is the log transformed number of trees with hollows on site (numerical), which 206 

was selected from a pool of covariates including forest age, slope and tree canopy height 207 

(Lindenmayer et al., 1991). 208 

Model fitting and comparison 209 

For each case study, we compared models with k-aggregated distributions with either a 210 

zero-inflated or a hurdle zero structure and the baseline models. Here, we restricted our search 211 

for k in the range of 0 to 5, and this range turned out to be enough for our case studies; for other 212 

cases, the modeler might want to adjust this search range. Thus, for each case study, we fitted 30 213 

GLM with k-aggregated distributions excluding the case of 0k  , i.e., 3 baseline models   5 k 214 

values 2 zero configurations, and 6 GLM with baseline distributions, i.e., 3 baseline models 2 215 

zero configurations. Wide uniform priors were used exclusively in the model.  216 

 Model performance was measured based on deviance information criterion (DIC, 217 

Spiegelhalter et al., 2002) 218 

DIC D pD   , 219 

where deviance D is twice the negative log-likelihood, D  is the posterior mean of the deviance, 220 

and 𝑝𝐷 is an estimate of the effective number of parameters in the model. The model with the 221 

minimum DIC is the recommended model, and as a rule of thumb, a < 2 difference in DIC 222 

relative to the recommended model suggests substantial evidence for the model, differences 223 

between 3 and 7 indicate that the model has considerably less support, whereas a larger than 10 224 

difference indicates that the model is very unlikely (Burnham and Anderson, 2003).  225 



A Bayesian method was used to estimate parameters and select models. We used JAGS 226 

4.0 (Plummer, 2003) in the statistical program R 3.2.5 (R Development Core Team, 2016). All 227 

the functionalities explored in this paper have been implemented in an easy to use R package 228 

konez hosted on C.Z.’s GitHub repository. See Appendix for a code example, and for more 229 

information, please go to https://hvoltbb.github.io/konez/. 230 

Simulation studies 231 

 We further conducted a simulation study based on case study C) Leadbeater’s possum 232 

abundance to examine the effect of sample size on the selection of k and model parameter 233 

estimates. We chose this case study for further analysis because this dataset includes covariates 234 

and it is based on an animal abundance survey. Most ecologists would find this type of datasets 235 

familiar and more relevant to their own work.  236 

Excess one pattern often links to rare events in biology and the corresponding sample 237 

sizes are often small as in case studies B) and C) here. In addition to the original sample size 238 

(151), we included scenarios with 2  and 4  the original sample size, i.e., with 300 and 600 239 

samples. To investigate the effect of sample size on model selection, we generated 500 random 240 

datasets based on the selected model, i.e., zero-inflated k-aggregated negative binomial with241 

1k   (Table 3), used a range of models with k from 0 to 5 to fit the datasets, and conducted 242 

model selection based on DIC. We recorded the number of datasets where the data generating 243 

model was selected and the percentage of simulations where the DGM has a 2DIC  . To 244 

investigate the effect of sample size on model parameter estimates, we generated 500 random 245 

samples from the selected model for each sample size scenario, fitted a model with the correct k 246 

value to each random sample. We checked whether the true parameter lay between the 95% 247 

credible interval of the fitted model.  248 



Results 249 

Model selection for 4 case studies 250 

For all our case studies, the selected model based on DIC had a k-aggregated distribution 251 

(Table 3). The reduction in DIC from the respective best baseline model was between 0.6 and 252 

4.7, indicating a moderate to significant improvement in model performance. The improvement 253 

was significant in case studies A) seabird bycatch, B) Legionnaires disease and D) frigatebird 254 

nesting sites ( 2DIC  ). Three case studies A), B, and D) selected a k-aggregated CMP model, 255 

and only C) Leadbeater’s possum abundance selected a k-aggregated negative binomial model. 256 

The selected value of k is relatively small, i.e., 1,2k  , considering our search range ( 0 5k  ). 257 

For each case study, many of the k-aggregated models have comparable fit with respect 258 

to the selected model (Table 3), i.e., having a less than 2 DIC . Cases A) and C) that included 259 

covariate information have, respectively, 8 and 9 models with comparable fit out of the total of 260 

30 candidate models ( 1k  ), and case studies B) and D) that did not include any covariate 261 

information have more than twice the number of comparable models. This suggests the 262 

importance of covariates in the selection of parameter k. On the other hand, none of the baseline 263 

models have comparable fit with respect to the selected model as can be seen from case studies 264 

A), B) and D). For case study C), two out of six baseline models show comparable fit with 265 

respect to the selected model, and both models use the negative binomial distribution but with 266 

different zero configurations. 267 

How zero catches were modeled had little effect on model performance for these datasets. 268 

Three of the selected models for the 4 cases have a zero-inflated configuration, and one has a 269 

hurdle configuration (Table 3). There is no clear relation of the zero configuration between the 270 

selected model and the best baseline model. Incidentally, all four best baseline models use the 271 



hurdle configuration. Models with the same type of distribution for the count process but with 272 

different assumptions on how zero observations were modeled produced comparable model fit 273 

for all our case studies (Supplementary material). 274 

Simulation study of the Leadbeater’s possum abundance 275 

With the original sample size, the data generating model (DGM) (k=1) was selected 276 

47.20% of the time, and the baseline model was incorrectly selected 26% of the time (Table 4). 277 

When a model other than the DGM was selected, the incorrectly selected models have 278 

comparable performance with the DGM more than 80% of the time when the original sample 279 

size was used. In addition, 95% credible interval estimates have excellent coverage in the 280 

simulation study when the original sample size was used (Table 5).  281 

Increasing sample size improved the probability of selecting the correct model for this 282 

case study (Table 4). With 4 the sample size, the DGM was selected 66.80% of the time, and 283 

the support for the baseline model almost halved. This trend can also be seen from the shift in 284 

concentration of the distribution of the selected k over the range of 0 to 5. With increasing 285 

sample size, the support for the correct model is increasing. The percentage of runs with 286 

2DIC   only increases slightly when the sample size are about 2 and 4 times the original 287 

sample size. The 95% credible interval estimates still have excellent coverage (Table 5). 288 

Discussion 289 

In this study, we introduce a novel method to transform discrete distributions to better fit 290 

excess ones in count data within the generalized linear model framework and demonstrated its 291 

use in four case studies in ecology using Bayesian methods. In all the case studies, the excess 292 

zero pattern co-occurred with excess ones, and the excess zeros were modeled independently 293 

through either a zero-inflated or hurdle configuration. The use of k-aggregated transformation 294 



lead to moderate to significant improvement in model fitting for our case studies. The better 295 

performance of k-aggregated distributions is due to the flexibility of adapting to the relatively 296 

high frequency of singletons in the dataset. This new technique has broad applicability and utility 297 

in improving model fit of count data with potential excess ones.  298 

As suggested by our case studies, the existence of excess-ones in the dataset is a subtle 299 

issue, and their presence in ecological data of rare events may be more prevalent than we 300 

thought. The seabird bycatch case study is an extreme example of excess ones. This excess-301 

oneness is not unique to the U.S. Atlantic PLL fishery; a large number of singleton bycatches of 302 

seabirds are also observed in the Hawaiian PLL fishery (Gilman et al., 2016). However, before 303 

conducting a proper analysis on that dataset, we cannot claim if those ones are in excess or not, 304 

because excess-oneness is a relative measure. Excess ones may be a common feature of PLL 305 

seabird bycatch and even of rare or non-targeted species in general. The other three case studies 306 

were also concerning incidence of rare events, whether it is a rare disease or rare species 307 

(Cunningham and Lindenmayer, 2005; Tang et al., 2017). The k-aggregated distributions also 308 

have better performance for a rare spider dataset in Hong Kong presented in the introductory 309 

book on zero-inflated models by Zuur and Ieno (2016). This example was not presented in this 310 

paper for brevity and interested readers can easily perform the relevant analysis using the 311 

provided R package konez.  312 

Another feature of this paper is the provision of an easy to use R package konez to 313 

facilitate the adoption of the k-aggregated technique. For example, to perform a model selection 314 

of a series of k-aggregated models with either a hurdle or zero-inflation configuration requires 315 

only one line of code. Please refer to the appendix for an example on how to perform the model 316 

selection procedure on the Leadbeater’s possum abundance dataset with konez. The case studies 317 



included in this paper may not represent all potential cases of rare ecological events, but both the 318 

simulation study and the 4 case studies demonstrated the potential wide applicability of the k-319 

aggregated approach. As more and more ecologists report the analysis of their own datasets with 320 

k-aggregated distributions, possibly using konez, we can better understand the real prevalence of 321 

excess-ones in the count data. 322 

The k-aggregated modeling technique extends existing modeling strategies for rare 323 

events. It is a generalization of the baseline count distributions, because with 0k  , it reduces to 324 

its baseline distribution; it is versatile, because it can be applied to virtually every count 325 

distributions; it is an add-on refinement to both the hurdle and zero-inflation models (Lambert, 326 

1992; Welsh et al., 1996). Both hurdle and zero-inflated models enjoy extensive usage in 327 

modeling literature, including modeling species abundance (Wenger and Freeman, 2008), fishery 328 

bycatch (Minami et al., 2007) and catch per unit effort standardization (Shono, 2008; Zhou et al., 329 

2016). All four case studies explored in this paper exhibit excess zeros, and the datasets were 330 

originally modeled either through a hurdle or zero-inflated model, in the case of the seabird 331 

bycatch example, a delta log-normal model was previously used (Li et al., 2016), which is a 332 

special form of hurdle model. The k-aggregated modeling technique can be applied along with 333 

existing hurdle or zero-inflated structures. As shown in the paper, the k-aggregated models out 334 

performed all those original models. In particular, the k-aggregated Poisson model presented in 335 

this paper is similar to the zero-and-one-inflated Poisson models (Tang et al., 2017), and the two 336 

models are equivalent when there are no covariates. This paper extends the idea presented in 337 

Tang et al. (2017) by generalizing the technique to more count distributions, and including the fit 338 

of covariate information through generalized linear models. 339 



The k-aggregated technique has broad applicability and utility in improving model fit of 340 

count data with potential excess ones. Our work would be useful to fishery and other biological 341 

scientists working with count data of rare events. In addition, an R package is provided for 342 

researchers to apply a quick analysis of their own dataset using the k-aggregated technique. 343 
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Table 1 Case studies used in this study. 451 

Group # Name Description Source 

Percentage of 

ones among 

positive records 

Includes 

Covariate(s)? 

1 
A) Seabird 

bycatch 

Observed seabird bycatch of U.S. western 

North Atlantic pelagic longline fleet from 

1992 to 2016. A total of 16,889 fishing 

operations were used, and 78 of them have 

incidentally caught one or more seabird. 

Raw data from the 

U.S. Atlantic pelagic 

observer program 

(Li et al., 2016; 

Zhou et al., 2019) 

35.9 Yes 

1 
B) Legionnaires 

disease reports 

Weekly Legionnaires disease count in 

Singapore in 2005 reported to the Ministry 

of Health of Singapore. The dataset 

consists of 63 records, 27 of which 

reported one or more disease report. 

Extracted from Xu et 

al. (2014) 
85.2 No 

2 

C) Leadbeater's 

possum 

abundance 

Leadbeater’s possum is an endangered 

species only found in the montane ash 

forests of the Central Highlands of 

Victoria, Australia. The animal count of 

151 survey sites were used in this study. 

Extracted from 

Cunningham and 

Lindenmayer (2005) 

16.1 Yes 

2 
D) Frigatebird 

nesting sites 

Survey counts of nests of Frigatebird, F. 

ariel and F. minor, in Coringa-Herald 

National Nature Reserve on North East 

Herald Island, Australia. The number of 

nests on 236 10x10 m quadrats were used 

in this study 

Extracted from 

Cunningham and 

Lindenmayer (2005) 

31.9 No 

 452 
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Table 2 Summary of all the models used in this study. With 1k  , the corresponding model is 454 

the same as the commonly used hurdle model or zero-inflated model. 455 

Baseline 

Model 

Category Description 

Poisson Hurdle 
Hurdle k-aggregated zero-truncated Poisson 

GLM with k=0, 1, 2, …, 5 

Negative 

binomial 

- 

Hurdle k-aggregated zero-truncated 

negative binomial GLM with k=0, 1, 2,  …, 

5 

CMP - 
Hurdle k-aggregated zero-truncated CMP 

GLM with k=0, 1, 2, …, 5 

Poisson Zero-inflation 
Zero-inflated k-aggregated Poisson GLM 

with k=0, 1, 2, …, 5 

Negative 

binomial 

- 
Zero-inflated k-aggregated negative 

binomial GLM with k=0, 1, 2, …, 5 

CMP - 
Zero-inflated k-aggregated CMP GLM with 

k=0, 1, 2, …, 5 

  456 



Table 3 Model selection results of four case studies. For the abbreviations used in this table, 457 

CMP stands for Conway-Maxwell-Poisson distribution, NB stands for negative binomial 458 

distribution, H stands for hurdle configuration of excess zeros, and ZI stands for the zero-inflated 459 

configuration of excess zeros. 460 

Case study 

Selected model  
(base line dist., k 

value, zero 

config.) 

Best baseline 
model, zero 

config. (DIC) 

Number of models with 

 DIC   2 among candidate 

models 

K-aggregated 

model 

Baseline 

models 

A) Seabird bycatch CMP, k=2, H NB, H (4.7) 8/30 0/6 

B) Legionnaires disease 

reports 
CMP, k=1, ZI CMP, H (2.5) 17/30 0/6 

C) Leadbeater's possum 
abundance 

NB, k=1, ZI NB, H (0.6) 9/30 2/6 

D) Frigatebird nesting 

sites 
CMP, k=1, ZI CMP, H (3.3) 20/30 0/6 

  461 



Table 4 Model selection result of the 500 simulated replicates for each of three different sample 462 

sizes (original, 2  and 4 ) based on the selected model (k-aggregated negative binomial with 463 

1k   and zero-inflation) of the Leadbeater’s possum abundance dataset. DGM stands for data 464 

generating model. 465 

Sample 

size 

Number of selected models with k 
Percentage of 

replicates when 
the DGM is 

selected 

Percentage of 

simulations when 

the DGM has a 

DIC   2 0k   1k   2k   3k   4k   5k   

1
 

130 236 99 26 5 4 47.20% 80.40% 

2
 

108 262 103 24 3 0 52.40% 85.00% 

4
 

71 334 86 9 0 0 66.80% 86.20% 

  466 



Table 5 Coverage percentage of 95% credible intervals for each of three different sample sizes 467 

(original, 2  and 4 ) based on the selected model (k-aggregated negative binomial with 1k   468 

and zero-inflation) of the Leadbeater’s possum abundance dataset 469 

Sample size 
Percentage of 95% credible intervals that covers the true value 

b1 c1 b2 c2 r 

1
 

95.0% 93.4% 94.2% 94.0% 96.8% 

2
 

96.0% 95.4% 93.8% 94.6% 96.0% 

4
 

95.2% 95.2% 95.6% 94.4% 96.8% 

   470 



 471 

Figure 1 Count data from two groups of case studies. Group #1 examples include A) seabird 472 

bycatch in pelagic longline fishery and B) Legionnaire disease reports [see Xu et al. (2014) for 473 

more details]; Group #2 examples include C) survey abundance of Leadbeater’s possum [see 474 

Lindenmayer et al. (1991) for further details] and D) Frigatebird nesting sites [see Cunningham 475 

and Lindenmayer (2005) for further details]. Except the seabird bycatch example, all relevant 476 

data including covariate(s) were extracted from the cited literature. In panel A, the frequency of 477 

zero counts of seabird bycatch were not plotted, which consists of more than 99% of all the 478 

counts; in panel B, the count of three has zero occurrence in the dataset, and it was not plotted. 479 
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